
Python / Java Rosetta Stone

Bob Wilson

September 16, 2016

Purpose / Scope

• The purpose of this guide is to help students

entering CS210 from CS110 (now that it is

taught in Python) to learn Java

• It presents a side by side comparison of the

Python and Java syntax for many common

programming constructs

• It is not comprehensive and may not cover

subtle but significant semantic differences

Using This Guide

• Don’t just use this guide to “port” Python to Java

(You may look like a dork to Java programmers)

– Python programs are often written “procedurally” (scripts)

– Java programs should be written “object oriented”

• Although you can write one Java class with a main

method and static “helper methods” (functions), that

is not the intent of the Java language or the culture

of Java programming/programmers

• A good Java program should be decomposed into

classes that encapsulate data with operations – not

a hierarchy of procedural “functions”

Using This Guide

• Do the top level design of your Java programs with

cooperating object oriented classes (e.g. use UML

class diagrams – not flow charts or pseudo-code)

• Use this guide to find the corresponding Java

syntax for a Python programming construct that

you already understand and want to use

• If you wrote good object oriented programs in

Python, you just need to learn Java syntax

• If you only wrote procedural programs (scripts) in

Python, you need to learn the OOP style plus learn

Java syntax (expect you’ll need to do more work)

General Formatting

• Comments
comments for human readers - not code

statement # comments to end of line

“”” start of multiple lines of comments

end of multiple lines of comments “””

• Comments
// comments for human readers – not code

statement; // comments to end line

/* start of multiple lines of comments

end of multiple lines of comments */

• Blocks (Indenting)
(maybe indented) a statement ending with :

(indented to next level) starting statement

(indented to same level) . . .

(indented to same level) ending statement

(indented to original or fewer levels)

• Blocks (Curly Braces)
{

starting statement;

. . .

ending statement;

} // indenting is used only for readability!!

• Program Statements
(type) name = expression; // must end with ;

• Program Statements
name = expression

• Shebang
#!/usr/bin/env python

• Shebang
Never used or required in Java source code

Key Words / Reserved Words

• Python Key Words
and del from not while

as elif global or with

assert else if pass yield

break except import print

class exec in raise

continue finally is return

def for lambda try

Notes:

Words in green are not reserved in Java and

can be used as identifiers, etc.

There are also some type and constant names:

int, float, True, False, None, etc.

that correspond to reserved words in Java

maybe with different spelling or capitalization:

int, float, true, false, null, etc.

• Java Reserved Words
abstract default goto* package this

assert do if private throw

boolean double implements protected throws

break else import public transient

byte enum instanceof return true

case extends int short try

catch false interface static void

char final long strictfp volatile

class finally native super while

const* float new switch

continue for null synchronized

* Are reserved words, but are not used.

Notes:

Words in black have generally the same

semantics in Java as they do in Python.

If you have been using any of the red words in

Python, you will need to avoid using them in Java

Primitive Data Types

• Numeric Data Types

int Natural Numbers (Integers)

long Large Natural Numbers

float Real Numbers (Decimal)

complex Complex Numbers (R + I * j)

• Numeric Data Types
byte 8 Bit Numbers

char 16 Bit Unicode Characters

short 16 Bit Numbers

int 32 Bit Numbers

long 64 Bit Numbers

float Real Numbers (Decimal)

double Larger/Smaller Real Numbers

• Other Data Types
boolean Logical “True” or “False” values

class Any defined class as a type

string An array of characters

• Other Data Types
boolean Logical “true” or “false” values

Class Any defined class as a type

String A somewhat special class

Interface Any defined interface as a type

Primitive Data Constants
• Type int / long
Decimal 123 # 12310

Octal 0123 # 8310

Hex 0x123 # 29110

Binary 0b101 # 510

long 1234567890123456789L

• Type int / long
Decimal 123 # 12310

Octal 0123 # 8310

Hex 0x123 # 29110

Binary 0b101 # 510 (Java 8)

long 1234567890123456789L

Note: In Java, long has a smaller maximum
number of digits than in Python

• Type float
float 123.0 # 123.0

float 1.23e308 // 1.23 x 10308

float 1.23e-308 // 1.23 x 10-308

Conversion needed to get desired type:

i = int(123.4) # i = 123

f = float(i) # f = 123.0

• Type float / double
float 123.0f // 123.0

float 1.23e38f // 1.23 x 1038

float 1.23e-38f // 1.23 x 10-38

double 1.23e308 // 1.23 x 10308

double 1.23e-308 // 1.23 x 10-308

Note: Type double is default for real in Java

Casting needed for narrowing conversions:

float f = (float) 123.4; // double to float

int i = (int) f; // float to int 123

Variables
• Declarations
All variables are “reference” types

Variables do not need to be declared.

A variable is created by initializing it

and its type is determined by the type

of the value assigned:

i = 10 # i is an int

Its type can be changed later:

i = 10.5 # i is a float now

A variable can be deleted (undefined):

del i

Using i in an expression is invalid now

unless it is initialized again.

• Declarations
There are primitive and reference variables.

All variables must be declared before use.

A variable is created by declaring it with its

data type and optionally initializing it.

A primitive variable is of a built in data type

int i = 10; // i is an int

Its type can not be changed later:

i = 10.5; // compilation error

A reference variable is of a user defined type

based on a class or is reference to an array:

String myString = “Hello”;

int [] myNumbers = new int[10];

A variable can not be deleted (undefined).

Operators
• Arithmetic Operators
+ add, e.g. 4 + 2 is 6

- subtract, e.g. 4 – 2 is 2

* multiply, e.g. 4 * 2 is 8

/ divide, e.g. 4 / 2 is 2 (dividend)

% modulo, e.g. 4 % 2 is 0 (remainder)

** exponentiation, e.g. 4 ** 2 is 16

Note: ++ and -- are NOT Python operators

• Arithmetic Operators
+ add, e.g. 4 + 2 is 6

- subtract, e.g. 4 – 2 is 2

* multiply, e.g. 4 * 2 is 8

/ divide, e.g. 4 / 2 is 2 (dividend)

% modulo, e.g. 4 % 2 is 0 (remainder)

Note: ** is NOT a Java operator

++ pre/post increment by one

-- pre/post decrement by one

• Logical Operators
&& and (between boolean values)

|| or (between boolean values)

! not (of a boolean value)

& Bitwise and (between int values)

| Bitwise or (between int values)

^ Bitwise exclusive or (between int values)

<< Bitwise Left Shift (of an int value)

>> Bitwise Right Shift (of an int value)

• Logical Operators
and and (between boolean values)

or or (between boolean values)

not not (of a boolean value)

& Bitwise and (between int values)

| Bitwise or (between int values)

^ Bitwise exclusive or (between int values)

<< Bitwise Left Shift (of an int value)

>> Bitwise Right Shift (of an int value)

Expressions

• Operator Precedence
Same in Python and Java (Algebraic)

Override precedence with parentheses ()

• Operator Precedence
Same in Python and Java (Algebraic)

Override precedence with parentheses ()

• Casting / Conversions
Numeric Casting/Conversions

Automatic widening type conversions,

e.g. 1 + 3.0 results in a float 4.0

Functions required for narrowing conversions,

e.g. 1 + int(3.0) results in an int 4

Non-numeric Conversions

Need to use conversion functions,

e.g int(“string of digits”) which

raises an Error for non-digit characters

• Casting / Conversions
Numeric Casting/Conversions

Automatic widening type conversions,

e.g. 1 + 3.0 results in a double 4.0

Casting required for narrowing conversions,

e.g. 1 + (int) 3.0 results in an int 4

Non-numeric Conversions

Need to use wrapper class static methods,

e.g Integer.parseInt(“string of digits”) which

throws an Exception for non-digit characters

Stand-alone Functions / Methods

• Function Definition
def function (parameters):

statements

return value

• Invoking a Function
no context of an object or class is required

returnValue = function(. . .)

e.g.

length = len(myString)

// using a function defined in the library

returnValue = packageName.function(. . .)

e.g.

import math # library package name

c = math.sqrt(2.0) # 1.414…

• No Equivalent in Java
A function can only be defined as a method

within the context of a class or an interface.

See Classes and Java 8 Lambda Expressions

• Invoking a Method
// the context of an object or class is required

// instance method (non static)

type returnValue = object.method(. . .);

e.g.

int length = myString.length();

// static method (defined in a class, e.g. Math)

type returnValue = Class.method(. . .);

e.g.

// Note: Math class is automatically imported

double root = Math.sqrt(2.0); // 1.414…

String Data Type

• Strings
myString = “Hello World”

myString = ‘Hello World’

myString = “””Hello World”””

Note: “\n” is end of line in a string

• String Class / char
String myString = “Hello World”;

char c = ‘a’; // ‘a’ = char constant for letter a

Note: ‘\n’ is end of line in a char

Note: “\n” is end of line in a String

• String Functions
n = len(myString) # n = 11

c = myString[0] # c = “H”

s = myString[0 : 2] # s = “He”

s = myString.upper() # s = “HELLO”

• String Methods / char
int n = myString.length(); // n = 11

char c = myString.charAt(0); // c = ‘H’

String s = myString.substring(0, 2); // s = “He”

s = myString.toUpperCase(); // “HELLO”

• String Operations
s = myString + “!” # Concatenation

s = myString + str(42) # HelloWorld42

myString == “Hello World” # True

• String Operations
s = myString + “!”; // Concatenation

s = myString + 42; // HelloWorld42

myString.equals(”Hello World”) // true

Multi-valued Data Types

• Lists
Python lists are a dynamic data structure.

Java arrays are a FIXED data structure.

anEmptyList = [] # type unspecified

myList = [“you”, “me”, “him”, “her”]

length = len(myList) # 4

myList[0] # “you”

myList[3] # “her”

myList[0] = “thee” # update an element

List methods in Python:

myList.sort() # sort the elements

myList.reverse() # reverse the elements

myNums.append(5) # add an element

myNums.remove(3) # remove one

• Arrays
Syntax for a Java array looks like a Python list,

BUT THE SEMANTICS ARE DIFFERENT!

int [] anEmptyArray= new int[10]; // type int

String [] myList = {“you”, “me”, “him”, “her”};

int length = myList.length; // 4

myList[0] // “you”

myList[3] // “her”

myList[0] = “thee”; // update an element

There are NO methods for a Java array

No equivalent with Java arrays

No equivalent with Java arrays

No equivalent with Java arrays.

No equivalent with Java arrays.

Length of a Java array can’t be changed.

Must use Java Collections class ArrayList<T>.

We will cover collection classes in CS210.

Multi-valued Data Types

• Tuples
person = (“Diana”, 32, “New York”)

person[0] # “Diana”

person[1] # 32

person[2] # “New York”

person[0] = “Amy” # not allowed

person = person + person (concatenate)

Person[3] # “Diana” (again)

• Dictionaries
words = { } # empty

words[“Hello”] = “Bonjour”

words[“Goodbye”] = “Adieu”

words[“Hello”] # “Bonjour”

words[“Yes”] # raises an Error

KeyError: “Yes”

• No Equivalent Type in Java
A Java object can be used as a specific “tuple”.

Define a class with the needed combo of types.

- Attributes of the class are the items.

- Setter and getter methods allow access - not []

BUT:

We MAY allow updating of item values.

We can NOT concatenate objects (except String)

(See Classes)

• No Equivalent Type in Java
Must use a Java Collections map class

e.g. HashMap<K,V> or TreeMap<K,V>.

We will cover these classes in CS210.

Input / Output

• Input (Command Line)
java classname tokens separated by spaces

• Main Method Arguments
public static void main (String[] args)

{

int n = args.length; // n = 4

String firstArg = args[0]; // “tokens”

. . .

String lastArg = args[3]; // “spaces”

// if first token should be an integer,

int n = Integer.parseInt(arg[0]);

// if last token should be a double,

double d = Double.parseDouble(arg[3]);

}

• Input (Command Line)
python script.py tokens separated by spaces

• Program Arguments
Note: No main function header is required

import sys # but import is required

n = len(sys.argv) # n = 5

firstArg = sys.argv[0] # “script.py”

. . .

lastArg = sys.argv[4] # “spaces”

if second token should be an integer,

n = int(sys.argv[1])

if last token should be a float,

f = float(sys.argv[4])

Input / Output

• User Prompt/Response
import java.util.Scanner; // at beginning of file

. . .

Scanner keyboard = new Scanner(System.in);

System.out.println(“Prompt:”);

String s = keyboard.next(); // token

int n = keyboard.nextInt(); // integer

float f = keyboard.nextFloat(); // real

double d = keyboard.nextDouble(); // double

boolean b = keyboard.nextBoolean(); // boolean

• Typed Outputs to User
System.out.println(“Text String”);

• Typed Outputs to User
print (“Text String”)

• User Prompt/Response

s = input(“Prompt”) // token

n = int(input(“Prompt:”)) // integer

f = float(input(“Prompt:”)) // real

Flow of Control Statements

• If / Else
if boolean expression:

statement1 or block1

else: # optional

statement2 or block2

May nest “if/else” inside “if” or “else”

Python “elif” must be “else if” in Java

Conditional Expression Evaluation
((False expr, True expr) [condition])

Conditional Boolean Operators
== equal

!= not equal

> greater than

< less than

• If / Else
if (boolean expression)

statement1; or {block1}

else // optional

statement2; or {block2}

May nest “if/else” inside “if” or “else”

Python “elif” must be “else if” in Java

Conditional Expression Evaluation
boolean expression ? true expr : false expr

Conditional Boolean Operators
== equal

!= not equal

> greater than

< less than

Flow of Control Statements

• For
for i in range(0, 10, 1):

statement or block using i

for item in items: # items is a list

statement or block using item

• For
for (int i = 0; i < 10; i++)

single statement; or {block}

// sometimes referred to as a “for-each” loop

for (type item : items) // items is an array

single statement; or {block}

• While
while (boolean expression)

single statement; or {block}

• While
while boolean expression:

statement or block for body of loop

Note: Loops may be nested in Python and Java

• Do . . . while
do // always executes body once

single statement; or {block}

while (boolean expression);

Classes

• Class Definition
class ClassName:

attributes and methods

• Class Definition
public class Classname

{

attributes and methods

} // end of class definition

• Public Attribute
name (optional = value)

• Public Attribute
public (static) type name (optional = value);

• Private Attribute
__name (optional = value)

Note: A programmer convention only

Access IS NOT prevented by interpreter

• Private Attribute
private (static) type name (optional = value);

Note: Access IS prevented by compiler

• Reserved Word “this”
Used similarly to “self” in Python

You must use the reserved word “this”.

Not required in as many places in the code,

e.g. not needed in method parameter lists.

• Conventional Word “self”
Used to refer to your own object in Python

You may use another word, but “self” is the

commonly accepted convention.

Classes

• Constructor Method
def __init__ (self, parameter):

self.parameter = parameter

• Constructor Method
public ClassName (parameter)

{

this.parameter = parameter;

} // end of method

• Public Method
def name (self, parameters):

statements

• Public Method
public type name (parameters)

{

statements;

} // end of method

• Private Method
def __name (self, parameters):

statements

Note: A programmer convention only

Access IS NOT prevented by interpreter

• Private Method
private type name (parameters)

{

statements;

} // end of method

Note: Access IS prevented by compiler

Classes

• Method Overloading
def name (self, param = None):

if param is None:

1st version of statements

else:

2nd version of statements

• Method Overloading
public type name () // no parameter

{

1st version of statements;

} // end of first “name” method

public type name (type param)

{

2nd version of statements;

} // end of second “name” method

• Method Return value
public type name (parameters)

{

return expression of type;

} // end of method

• Method Return Value
def name (self, parameters):

return expression

Python “Magic” Methods

• Magic Methods
__str__(self) # representation

__cmp__(self, other) # compare objects

(Supports operator overloading for >, <, etc.)

__add__(self, other) # and sub, mul, div, etc

(Supports operator overloading for +, -, *, /, etc

__eq__(self, other) # check equality

__iter__(self) # returns an iterator

(Supports “for item in items” type of loop)

__del__(self) # clean up

• Java Equivalents
public String toString() // representation

public int compareTo(that) // compare objects

(Supports implementing Comparable interface)

Note: Java operator overloading is not supported

)

public boolean equals(that) // check equality

public Iterator<T> iterator() // returns an interator

(Supports “for (type item : items)” for-each loop

and implementing Iterable<T> interface)

protected void finalize() // clean up

Creating / Deleting Objects

• Instantiating an Object
myObject = ClassName(. . .)

… are values for constructor’s parameters

• Instantiating an Object
Classname myObject = new ClassName(. . .);

// … are values for constructor’s parameters

• Deleting an Object
myObject = None # deletes object

(if there is no alias)

• Deleting an Object
myObject = null; // deletes object

// (if there is no alias)

• Creating an Alias
yourObject = myObject

… both variables refer to the same object

• Creating an Alias
ClassName yourObject = myObject;

… both variables refer to the same object

Inheritance / Interfaces

• Inheritance
OO Concept: A Cat is an Animal

class Cat(Animal):

attributes and methods

• Inheritance
// OO Concept: A Cat is an Animal

public class Cat extends Animal

{

attributes and methods

} // end of class

• Multiple Inheritance
class ClassName(Class1, Class2, …):

attributes and methods

• No Multiple Inheritance
Java doesn’t support more than one parent class

• Interfaces
Java supports implementing multiple interfaces

public class ClassName implements Int1, Int2, …

{

} // end of class

Inheritance / Interfaces
• Polymorphism
class Pet: # abstract parent class

def makeSound(self):

raise NameOfError(“text”)

class Dog(Pet): # concrete child class

def makeSound(self):

print “Woof Woof”

class Cat(Pet): # concrete child class

def makeSound(self):

print “Meow”

spot = Dog()

spot.makeSound() # Woof Woof

fluffy = Cat()

fluffy.makeSound() # Meow

Attempt to create/use an abstract class

fubar = Pet()

fubar.makeSound() # raises an Error

at run time

• Polymorphism
In Java, a reference to any object may be
saved as a reference to the type of a parent
class or of any implemented interface:

If Cat class and Dog class extend Pet class,
we can do these “widening“ conversions:

Dog d = new Dog();

Pet p = d; // our Pet is a Dog

p = New Cat(); // and is now a Cat

And call any Pet method on variable p:

p.anyPetMethod(. . .); // on Dog/Cat

If a method parameter needs to be a Pet,

public void methodName(Pet p) {…}

we can pass a Dog or a Cat object to it:

methodName(d); // pass it a Dog

methodName(new Cat()); // or Cat

If Pet is an abstract class, we can’t create a
Pet object (causes a compilation error)

Pet p = new Pet(); // compile error

Inheritance / Interfaces
• Polymorphism

If a method definition requires returning a
reference to a class or interface, it may
return a reference to an object of the class,
a child class, or an implementing class.

If Pet class implements Comparable<T>,

Dog and Cat class also implement it.

If we invoke a method with a return value

of type Comparable<T>:

Comparable<T> c = methodName(. . .);

It can return a Dog or a Cat object:

public Comparable<T> methodName(. . .)

{

if (some boolean expression)

return new Dog();

else

return new Cat();

}

Errors / Exceptions
• Errors
Because Python code is interpreted, many

syntax errors are detected only at run time.

>>> while True print ‘Hello World’ # no :

while True print ‘Hello World’

^

SyntaxError: invalid syntax

To raise an error in your code:

if something bad would happen:

raise NameOfError(“text”)

To handle a run time error - not syntax error

try:

statements that could raise an error

except nameOfError:

statements to recover from the error

else:

statements executed if no error raised

• Exceptions
In Java, all syntax errors are caught during
compilation and before run time.

Exceptions occur during runtime only if:

1. JVM can’t execute, e.g. int divide by 0

2. Code throws an exception object

To throw an exception in your code:

if (something bad would happen)

throw new NameOfException(“text”);

To handle an exception in your code:

try {

statements that may throw an exception

} catch (NameOfException e) {

statements to recover from the exception

} finally {

statements to execute regardless

}

Functional Programming (Java 8)

• Lambda Expressions
import math

f = lambda x, y : math.sqrt(x * x + y * y)

c = f(3, 4) # c = 5.0

• Lambda Expressions
public class LambdaTest {

interface MyMath { // a functional interface

int operation (int a, int b); // only 1 method

}

public int operate(int a, int b, MyMath math) {

return math.operation (a, b);

}

public static void main(String[] args) {

// alternative definitions for operation to add

MyMath add = (int a, int b) -> a + b; // or

MyMath add = (a, b) -> a + b; // or

MyMath add = (a, b) -> {return a + b; }

LambdaTest tester = new LambdaTest();

int n = tester.operate(2, 5, add) // n = 7

}

}

